On cut generation for facial disjunctive programs with two-term disjunctions

نویسنده

  • Tamás Kis
چکیده

In this paper we generalise the method of Balas and Perregaard for 0/1 mixed-integer programming to facial disjunctive programs with two-term disjunction. We apply our results to linear programs with complementarity constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lift-and-project for general two-term disjunctions

In this paper we generalize the cut strengthening method of Balas and Perregaard for 0/1 mixed-integer programming to disjunctive programs with general two-term disjunctions. We apply our results to linear programs with complementarity constraints.

متن کامل

Generating Disjunctive Cuts for Mixed Integer Programs — Doctoral Dissertation

This report constitutes the Doctoral Dissertation for Michael Perregaard and is a collection of results on the efficient generation of disjunctive cuts for mixed integer programs. Disjunctive cuts is a very broad class of cuts for mixed integer programming. In general, any cut that can be derived from a disjunctive argument can be considered a disjunctive cut. Here we consider specifically cuts...

متن کامل

A computational study of the cutting plane tree algorithm for general mixed-integer linear programs

The cutting plane tree (CPT) algorithm provides a finite disjunctive programming procedure to obtain the solution of general mixed-integer linear programs (MILP) with bounded integer variables. In this paper, we present our computational experience with variants of the CPT algorithm. Because the CPT algorithm is based on discovering multi-term disjunctions, this paper is the first to present co...

متن کامل

Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctive Programs∗

This article investigates cutting planes for mixed-integer disjunctive programs. In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. For disjunctions arising from binary variables, it is known that these cutting planes are essentially the same as Gomory mixed-integer and mixed-integer rounding cuts. In this article, we investigate ...

متن کامل

Stronger Cuts from Weaker Disjunctions

We discuss an enhancement of the Balas-Jeroslow procedure for strengthening disjunctive cuts for mixed 0-1 programs. It is based on the paradox that sometimes weakening a disjunction helps the strengthening procedure and results in sharper cuts. When applied to a split cut derived from a source row of the simplex tableau, the enhanced procedure yields, besides the Gomory Mixed Integer cut (GMI)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009